Kaimosi Friends University Repository

Watermelon rind based adsorbents for the removal of water pollutants: a critical review

Show simple item record

dc.contributor.author Onyango, Collins
dc.contributor.author Nyairo, Wilfida
dc.contributor.author Tchieta, Gerard P.
dc.contributor.author Shikuku, Victor O.
dc.date.accessioned 2025-06-19T07:53:24Z
dc.date.available 2025-06-19T07:53:24Z
dc.date.issued 2025-05-13
dc.identifier.citation Abd-Alhamid, R. R., Youssef, W., Khalil, M., Mohamed, I., and Shiha, A. A. (2024). A dynamic study on removal some heavy elements using natural orange peels as low-cost subsequent adsorbent from agricultural waste. Zagazig J. Agric. Res. 51 (3), 493–504. doi:10.21608/zjar.2024.367204 Adebowale, K., Egbedina, A., and Shonde, B. (2020). Adsorption of lead ions on magnetically separable Fe3O4 watermelon composite. Appl. Water Sci. 10 (10), 225–233. doi:10.1007/s13201-020-01307-y Ahmad, M. A., Ahmad, N., and Bello, O. S. (2017). Statistical optimization of adsorption process for removal of synthetic dye using watermelon rinds. J. Model. Earth Syst. Environ. 3 (25), 25–29. doi:10.1007/s40808-017-0269-0 Åkerholm, M., Hinterstoisser, B., and Salmén, L. (2004). Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr. Res. 339 (3), 569–578. doi:10.1016/j.carres.2003.11.012 Al-Ghouti, M. A., and Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: a review. J. Hazard. Mater. 393, 122383. doi:10.1016/j. jhazmat.2020.122383 Aljeboree, A., Gs, H., Aa, K., Mm, A., Ha, L., Amb, A.-D., et al. (2022). Highly adsorbent surface from watermelon peels: as non-conventional low-cost sorbent; Equilibrium and Recycle study. IOP Conf. Ser. Earth Environ. Sci. 1029, 012008. doi:10.1088/1755-1315/1029/1/012008 Frontiers in Environmental Chemistry 20 frontiersin.org Onyango et al. 10.3389/fenvc.2025.1568695Aljeboree, A. M., Alshirifi, A. N., and Alkaim, A. F. (2019). Removal of Pharmaceutical Amoxicillin drug by using (CNT) decorated Clay/Fe 2 O 3 Micro/ Nanocomposite as effective adsorbent: process optimization for ultrasound-assisted adsorption. Int. J. Pharm. Res. 11 (4), 80. doi:10.31838/ijpr/2019.11.04.012 Allen, S., and Koumanova, B. (2005). Decolourisation of waterwastewater using adsorption. J. Univ. Chem. Technol. Metallurgy 40 (3), 175–192. Altowayti, W. a. H., Othman, N., Al-Gheethi, A., Dzahir, N. H. B. M., Asharuddin, S. M., Alshalif, A. F., et al. (2021). Adsorption of Zn2+ from synthetic wastewater using dried watermelon rind (D-WMR): an overview of nonlinear and linear regression and error analysis. Molecules 26 (20), 6176. doi:10.3390/molecules26206176 Annadurai, G., Juang, R. S., and Lee, D. J. (2003). Adsorption of heavy metals from water using banana and orange peels. Water Sci. Technol. 47 (1), 185–190. doi:10.2166/ wst.2003.0049 Archibong, U. D., Ikpe, E. E., and Amienghemhen, O. D. (2024). Adsorption of copper and cadmium from wastewater using chemically activated watermelon peels as adsorbent. Chem. Sci. Int. J. 33 (1), 1–11. doi:10.9734/CSJI/2024/v33i1879 Babel, S., and Kurniawan, T. A. (2004). Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54 (7), 951–967. doi:10.1016/j.chemosphere.2003. 10.001 Bachmann, S., Dávila, I., Calvete, T., Féris, L., and Technology (2022). Adsorption of Cr (VI) on lignocellulosic wastes adsorbents: an overview and further perspective. Int. J. Environ. Sci. 19 (12), 12727–12748. doi:10.1007/s13762-022-03928-z Badiei, A., Mirahsani, A., Shahbazi, A., Younesi, H., and Alizadeh, M. (2014). Adsorptive removal of toxic dye from aqueous solution and real industrial effluent by tris (2-aminoethyl) amine functionalized nanoporous silica. Environ. Prog. Sustain. Energy 33 (4), 1242–1250. doi:10.1002/ep.11923 Bamisaye, A., Adesina, M. O., Alfred, M. O., Ige, A. R., Idowu, M. A., and Adegoke, K. A. (2023). Kinetic and mechanistic study of the biosorption of Copper(II) Ion from wastewater using porous Chitosan-Walnut shell composite. Chem. Data Collect. 45, 101024. doi:10.1016/j.cdc.2023.101024 Bamisaye, A., Adesina, M. O., Ige, A. R., Alli, Y. A., Adeniyi, O. M., Idowu, M. A., et al. (2024). Adsorption of Cu(II) ion from aqueous solution onto mesoporous chitosanfunctionalized watermelon rind composite. Biomass Convers. Biorefinery. doi:10.1007/ s13399-024-05959-7 Banerjee, K., Ramesh, S., Nidheesh, P., Bharathi, K., and Environment (2012). A novel agricultural waste adsorbent, watermelon shell for the removal of copper from aqueous solutions. Iran. J. energy 3 (2), 143–156. doi:10.5829/idosi.ijee.2012.03.02.0396 Bhakta, J. N., and Ali, M. M. (2020). in Arsenic water resources contamination: challenges and solutions. Editors A. Fares and S. K. Singh (Cham: Springer International Publishing), 207–230. Bibaj, E., Lysigaki, K., Nolan, J. W., Seyedsalehi, M., Deliyanni, E. A., Mitropoulos, A. C., et al. (2019). Activated carbons from banana peels for the removal of nickel ions. Int. J. Environ. Sci. Technol. 16 (2), 667–680. doi:10.1007/ s13762-018-1676-0 Chaitra, G., Sumana, Y., and Praveen Kumar, G. (2022). Removal efficiency of methylene blue dye using chemically activated watermelon rinds as a low-cost adsorbent. Int. Res. J. Eng. Technol. (IRJET) 9 (9), 1157–1160. Chaudhari, S. A., and Singhal, R. S. (2015). Cutin from watermelon peels: a novel inducer for cutinase production and its physicochemical characterization. Int. J. Biol. Macromol. 79, 398–404. doi:10.1016/j.ijbiomac.2015.05.006 Chen, X., Lin, Q., He, R., Zhao, X., and Li, G. (2017). Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour. Technol. 241, 236–243. doi:10.1016/j.biortech.2017.04.012 Crini, G., Lichtfouse, E., Wilson, L. D., and Morin-Crini, N. (2019). Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 17 (1), 195–213. doi:10.1007/s10311-018-0786-8 Dąbrowski (2001). Adsorption—from theory to practice. Adv. Colloid Interface Sci. 93 (1-3), 135–224. doi:10.1016/S0001-8686(00)00082-8 Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J., et al. (2018). Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review. Chemosphere 211, 235–253. doi:10.1016/j.chemosphere.2018.06.179 Devanathan, R., Vivekanandan, B., Rengadurai, S., Balaji, G. L., and Lakshmipathy, R. (2022). Efficiency of Watermelon rind towards adsorption of Ce (III) and Pr (III) ions. Mater. Today Proc. 55, 253–258. doi:10.1016/j.matpr.2021.06.429 Dhaouadi, F., Sellaoui, L., Reynel-Ávila, H. E., Landín-Sandoval, V., MendozaCastillo, D. I., Jaime-Leal, J. E., et al. (2021). Adsorption mechanism of Zn(2+), Ni(2+), Cd(2+), and Cu(2+) ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling. Environ. Sci. Pollut. Res. Int. 28 (24), 30943–30954. doi:10.1007/s11356-021-12832-x Dilekoglu, M. F. (2016). Use of genetic algorithm optimization technique in the adsorption of phenol on banana and grapefruit peels. J. Chem. Soc. Pak. 38 (6), 1252–1262. Dinh, V.-P., Le, H. M., Nguyen, V.-D., Dao, V.-A., Hung, N. Q., Tuyen, L. A., et al. (2019). Insight into the adsorption mechanisms of methylene blue and chromium (III) from aqueous solution onto pomelo fruit peel. RSC Adv. 9 (44), 25847–25860. doi:10. 1039/C9RA04296B Egbedina, A. O., Olu-Owolabi, B. I., and Adebowale, K. O. (2023). Batch and continuous fixed-bed adsorption of antibiotics from aqueous solution using stearic acid-activated carbon composite. Energy, Ecol. Environ. 8 (2), 129–140. doi:10.1007/ s40974-023-00268-7 Ekloh, E., and Yafetto, L. (2024). Fermentation and valorization of watermelon (Citrullus lanatus) rind wastes into livestock feed using Aspergillus Niger and Mucor sp. Sci. Afr. 23, 020355–e2110. doi:10.1016/j.sciaf.2023.e02035 El Nemr, M. A., Abdelmonem, N. M., Ismail, I. M. A., Ragab, S., and El-Nemr, A. (2020). Removal of Acid Yellow 11 dye using a novel modified biochar derived from watermelon peels. Desalination Water Treat. 203, 403–431. doi:10.5004/dwt.2020. 26207 El-Nemr, M. A., Yilmaz, M., Ragab, S., and El Nemr, A. (2022). Watermelon peels biochar-S for adsorption of Cu2+ from water. Desalination Water Treat. 261, 195–213. doi:10.5004/dwt.2022.28506 El-Shafie, A. S., Hassan, S. S., Akther, N., and El-Azazy, M. (2021). Watermelon rinds as cost-efficient adsorbent for acridine orange: a response surface methodological approach. Environ. Sci. Pollut. Res. 30, 71554–71573. doi:10.1007/s11356-021-13652-9 El-Tawabty, D. S., Abd El-Aleem, I. M., Ahmed, S. S., El-Hadary, A. E., and Ali, R. M. (2024). Hexavalent chromium adsorption by watermelon peels from tannery wastewater. Egypt. J. Chem. 67 (13), 241–250. doi:10.21608/ejchem.2024.257332.9027 Erugo, A. I., Sunday, K., and Olusesi, F. Y. (2022). Optimization of bio-fertilizer production from watermelon peels using response surface methodology. Chem. Eng. Industrial Chem. doi:10.26434/chemrxiv-2022-cttd7 Foo, K. Y., and Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156 (1), 2–10. doi:10.1016/j.cej.2009.09.013 Freundlich, H. M. F. (1906). Over the adsorption in solution. J. Phys. Chem. 57 (385471), 1100–1107. Gorgulu, A., and Gorgulu, Y. F. (2025). Production of sustainable food ingredients from watermelon wastes using drum-drying. J. Food Process Eng. 48 (1), 1–12. doi:10. 1111/jfpe.70040 Guo, Y., and Rockstraw, D. A. (2006). Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon 44 (8), 1464–1475. doi:10.1016/j.carbon.2005.12.002 Gupta, V., and Suhas, (2009). Application of low-cost adsorbents for dye removal–a review. J. Environ. Manag. 90 (8), 2313–2342. doi:10.1016/j.jenvman.2008.11.017 Hadi, Z. A., Aljeboree, A., and Alkaim, A. (2014). Adsorption of a cationic dye from aqueous solutions by using waste glass materials: isotherm and thermodynamic studies. Int. J. Chem. Sci. 12 (4), 1273–1288. Han, R., Zou, W., Yu, W., Cheng, S., Wang, Y., and Shi, J. (2007). Biosorption of methylene blue from aqueous solution by fallen phoenix tree’s leaves. J. Hazard. Mater. 141 (1), 156–162. doi:10.1016/j.jhazmat.2006.06.107 Ho, Y.-S. (2006). Review of second-order models for adsorption systems. J. Hazard. Mater. 136 (3), 681–689. doi:10.1016/j.jhazmat.2005.12.043 Ho, Y. S., and Mckay, G. (1998). Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70 (2), 115–124. doi:10.1016/S0923-0467(98)00076-1 Hussain, M. S., Rehman, R., Imran, M., Dar, A., Akram, M., Al-Abbad, E. A., et al. (2022). Eco-friendly detoxification of Congo red dye from water by citric acid activated bioadsorbents consisting of watermelon and water chestnuts peels collected from indigenous resources. Adsorpt. Sci. and Technol. 2022, 9056288. doi:10.1155/2022/ 9056288 Iqbal, M., Asma, S., and And Kalim, I. (2009). Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent. Sep. Sci. Technol. 44 (15), 3770–3791. doi:10.1080/01496390903182305 Isik, Z., Saleh, M., M’barek, I., Yabalak, E., Dizge, N., and Deepanraj, B. (2024). Investigation of the adsorption performance of cationic and anionic dyes using hydrochared waste human hair. Biomass Convers. Biorefinery 14 (3), 3715–3728. doi:10.1007/s13399-022-02582-2 Istratie, R., Stoia, M., Păcurariu, C., and Locovei, C. (2019). Single and simultaneous adsorption of methyl orange and phenol onto magnetic iron oxide/carbon nanocomposites. Arabian J. Chem. 12 (8), 3704–3722. doi:10.1016/j.arabjc.2015.12.012 Jasim, L. S., and Aljeboree, A. M. (2021). Removal of heavy metals by using chitosan/ poly (acryl amide-acrylic acid) hydrogels: characterization and kinetic study. Neuro Quantology 19 (2), 31–37. doi:10.14704/nq.2021.19.2.nq21014 Jawad, A. H., Kadhum, A. M., and Ngoh, Y. S. (2018a). Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies. Desalination Water Treat. 109, 231–240. doi:10.5004/dwt.2018.21976 Jawad, A. H., Ngoh, Y., and Radzun, K. A. (2018b). Utilization of watermelon (Citrullus lanatus) rinds as a natural low-cost biosorbent for adsorption of methylene blue: kinetic, equilibrium and thermodynamic studies. J. Taibah Univ. Sci. 12 (4), 371–381. doi:10.1080/16583655.2018.1476206 Frontiers in Environmental Chemistry 21 frontiersin.org Onyango et al. 10.3389/fenvc.2025.1568695Jawad, A. H., Razuan, R., Appaturi, J. N., Wilson, L. D., and Interfaces (2019). Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation. Surfaces 16, 76–84. doi:10.1016/j.surfin.2019.04.012 Jiang, J., Zhang, S., Li, S., Zeng, W., Li, F., and Wang, W. (2022). Magnetized manganese-doped watermelon rind biochar as a novel low-cost catalyst for improving oxygen reduction reaction in microbial fuel cells. Sci. Total Environ. 802, 149989. doi:10. 1016/j.scitotenv.2021.149989 Kanungo, S. B., Tripathy, S. S., Mishra, S. K., Sahoo, B., and Rajeev, (2004). Adsorption of Co2+, Ni2+, Cu2+, and Zn2+ onto amorphous hydrous manganese dioxide from simple (1–1) electrolyte solutions. J. colloid interface Sci. 269 (1), 11–21. doi:10.1016/j.jcis.2003.07.002 Katal, R., Ghiass, M., and Esfandian, H. (2011). Application of nanometer size of polypyrrole as a suitable adsorbent for removal of Cr (VI). J. Vinyl Addit. Technol. 17 (3), 222–230. doi:10.1002/vnl.20287 Kumar, A. K., and Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4 (1), 7. doi:10.1186/s40643-017-0137-9 Kumar, K. V., and Sivanesan, S. (2005). Comparison of linear and non-linear method in estimating the sorption isotherm parameters for safranin onto activated carbon. J. Hazard. Mater. 123 (1-3), 288–292. doi:10.1016/j.jhazmat.2005.03.040 Kyzas, G. Z., and Kostoglou, M. (2014). Green adsorbents for wastewaters: a critical review. Materials 7 (1), 333–364. doi:10.3390/ma7010333 Lakshmipathy, R., and Sarada, N. (2013). Application of watermelon rind as sorbent for removal of nickel and cobalt from aqueous solution. Int. J. Mineral Process. 122, 63–65. doi:10.1016/j.minpro.2013.03.002 Lakshmipathy, R., and Sarada, N. C. (2016). Methylene blue adsorption onto native watermelon rind: batch and fixed bed column studies. Desalination Water Treat. 57 (23), 10632–10645. doi:10.1080/19443994.2015.1040462 Lam, S. S., Liew, R. K., Wong, Y. M., Yek, P. N. Y., Ma, N. L., Lee, C. L., et al. (2017). Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J. Clean. Prod. 162, 1376–1387. doi:10.1016/j.jclepro.2017.06.131 Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38 (11), 2221–2295. doi:10.1021/ja02268a002 Lasheen, M., El-Sherif, I. Y., Sabry, D. Y., El-Wakeel, S., and El-Shahat, M. (2016). Adsorption of heavy metals from aqueous solution by magnetite nanoparticles and magnetite-kaolinite nanocomposite: equilibrium, isotherm and kinetic study. Desalination Water Treat. 57 (37), 17421–17429. doi:10.1080/19443994.2015.1085446 Lee, S.-Y., and Choi, H.-J. (2021). Efficient adsorption of methylene blue from aqueous solution by sulfuric acid activated watermelone rind (Citrullus lanatus). Appl. Chem. Eng. 32 (3), 348–356. doi:10.14478/ace.2021.1030 Letechipia, J. O., González-Trinidad, J., Júnez–Ferreira, H. E., Bautista–Capetillo, C., Robles Rovelo, C. O., and Contreras Rodríguez, A. R. (2023). Removal of arsenic from semiarid area groundwater using a biosorbent from watermelon peel waste. Heliyon 9 (2), e13251. doi:10.1016/j.heliyon.2023.e13251 Li, H., Xiong, J., Xiao, T., Long, J., Wang, Q., Li, K., et al. (2019a). Biochar derived from watermelon rinds as regenerable adsorbent for efficient removal of thallium(I) from wastewater. Process Saf. Environ. Prot. 127, 257–266. doi:10.1016/j.psep.2019. 04.031 Li, J., Li, H., Yuan, Z., Fang, J., Chang, L., Zhang, H., et al. (2019b). Role of sulfonation in lignin-based material for adsorption removal of cationic dyes. Int. J. Biol. Macromol. 135, 1171–1181. doi:10.1016/j.ijbiomac.2019.06.024 Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthes, V., and Krimissa, M. (2007). Sorption isotherms: a review on physical bases, modeling and measurement. Appl. Geochem. 22 (2), 249–275. doi:10.1016/j.apgeochem.2006.09.010 Lou, Z., Xing, S., Xiao, X., Shan, W., Xiong, Y., and Fan, Y. (2018). Selective adsorption of Re(VII) by chitosan modified with imidazolium-based ionic liquid. Hydrometallurgy 179, 141–148. doi:10.1016/j.hydromet.2018.05.025 Low, W., Kevin, S., and Lee, H. (2023). Adsorption of zinc, copper, and iron from synthetic wastewater using watermelon (Citrullus Lanatus), Mango (Mangifera Indica L) and rambutan peels (Nephelium Lappaceum L) as bio-sorbents. J. Eng. Sci. Technol. 18 (1), 386–405. Magaji, B., Maigari, A. U., Abubakar, U. A., Sani, M. M., and Maigari, A. U. (2020). Batch adsorption of safranin dye from an aqueous solution of balanites aegyptiaca seed coats. Asian J. Phys. Chem. Sci. 8 (1), 48–54. doi:10.9734/AJOPACS/2020/v8i130109 Malbenia, J. M., Benettayeb, A., Belkacem, M., Ruvimbo Mitchel, C., Hadj Brahim, M., Benettayeb, I., et al. (2024). An overview on the key advantages and limitations of batch and dynamic modes of biosorption of metal ions. Chemosphere 357, 142051. doi:10. 1016/j.chemosphere.2024.142051 Mashkoor, F., and Nasar, A. (2020). Magsorbents: potential candidates in wastewater treatment technology–A review on the removal of methylene blue dye. J. magnetism magnetic Mater. 500, 166408. doi:10.1016/j.jmmm.2020.166408 Masoudian, N., Rajabi, M., and Ghaedi, M. (2019). Titanium oxide nanoparticles loaded onto activated carbon prepared from bio-waste watermelon rind for the efficient ultrasonic-assisted adsorption of Congo red and phenol red dyes from wastewaters. Polyhedron 173, 114105–114109. doi:10.1016/j.poly.2019.114105 Meseldzija, S., Petrovic, J., Onjia, A., Volkov-Husovic, T., Nesic, A., and Vukelic, N. (2019). Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater. J. Industrial Eng. Chem. 75, 246–252. doi:10.1016/j. jiec.2019.03.031 Mohammad, A., and Pa, M. N. (1997). Physico-chemical adsorption treatments for minimization of heavy metal contents in water and wastewaters. J. Sci. industrial Res. 56 (9), 523–539. Molina-Calderón, L., Basualto-Flores, C., Paredes-García, V., and Venegas-Yazigi, D. (2022). Advances of magnetic nanohydrometallurgy using superparamagnetic nanomaterials as rare earth ions adsorbents: a grand opportunity for sustainable rare earth recovery. Sep. Purif. Technol. 299, 121708. doi:10.1016/j.seppur.2022.121708 Mort, A., Zheng, Y., Qiu, F., Nimtz, M., and Bell-Eunice, G. (2008). Structure of xylogalacturonan fragments from watermelon cell-wall pectin. Endopolygalacturonase can accommodate a xylosyl residue on the galacturonic acid just following the hydrolysis site. Carbohydr. Res. 343 (7), 1212–1221. doi:10. 1016/j.carres.2008.03.021 Muhammad, A., Rashidi, A. R., Roslan, A., and Buddin, M. M. H. S. (2020). Performance study of watermelon rind as coagulants for the wastewater treatment. J. Phys.: Conf. Ser. 1535 012053. doi:10.1088/1742-6596/1535/1/012053 Nethaji, S., Sivasamy, A., and Mandal, A. (2013). Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int. J. Environ. Sci. Technol. 10, 231–242. doi:10.1007/s13762-012-0112-0 Ngulube, T., Gumbo, J. R., Masindi, V., and Maity, A. (2017). An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. J. Environ. Manag. 191, 35–57. doi:10.1016/j.jenvman.2016.12.031 Nizam, N. U. M., Hanafiah, M. M., Mahmoudi, E., Mohammad, A. W., and Oyekanmi, A. A. (2022). Effective adsorptive removal of dyes and heavy metal using graphene oxide based Pre-treated with NaOH/H2SO4 rubber seed shells synthetic graphite Precursor: equilibrium Isotherm, kinetics and thermodynamic studies. Sep. Purif. Technol. 289, 120730. doi:10.1016/j.seppur.2022.120730 Ofomaja, A. E., and Ho, Y.-S. (2007). Equilibrium sorption of anionic dye from aqueous solution by palm kernel fibre as sorbent. Dyes Pigments 74 (1), 60–66. doi:10. 1016/j.dyepig.2006.01.014 Okam, E. C., Odo, G. I., Uduma, C. K., Ijioma, G. U., and Okolo, B. I. (2022). Biosorption of chromium (II) ion from textile effluent using watermelon shell-activated carbon. Path Sci. 8 (9), 1018–1029. doi:10.22178/pos.85-2 Omar, N., Abdullah, E. C., Numan, A., Mubarak, N. M., Khalid, M., Aid, S. R., et al. (2022). Facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material. J. Energy Storage 49, 104147. doi:10.1016/j.est.2022.104147 Ong, S. T., Keng, P. S., Ooi, S. T., Hung, Y. T., and Lee, S. L. (2012). Utilization of fruits peel as a sorbent for removal of methylene blue. Asian J. Chem. 24 (1), 398. Onyango, C., Nyairo, W., Kwach, B., Shikuku, V., Sylvain, T., Tamaguelon, H. D., et al. (2024). Synthesis of pumice and medical waste incinerator fly ash based phosphate geopolymers for methylene blue dye adsorption: co-valorization, parameters and mechanism. Mater. Adv. 5 (21), 8546–8563. doi:10.1039/D4MA00779D Othman, N., Kueh, Y., Azizul-Rahman, F., and Hamdan, R. (2014). Watermelon rind: a Potential Adsorbent for zinc removal. Appl. Mech. 680, 146–149. doi:10.4028/www. scientific.net/AMM.680.146 Patel, H. (2022). Comparison of batch and fixed bed column adsorption: a critical review. Int. J. Environ. Sci. Technol. 19 (10), 10409–10426. doi:10.1007/s13762-021- 03492-y Pavan, F. A., Mazzocato, A. C., and Gushikem, Y. (2008). Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent. Bioresour. Technol. 99 (8), 3162–3165. doi:10.1016/j.biortech.2007.05.067 Popoola, L. T., Yusuff, A. S., Adeyi, A. A., and Omotara, O. O. (2022). Adsorptive removal of heavy metals from oil well produced water using citrullus lanatus peel: characterization and optimization. South Afr. J. Chem. Eng. 39, 19–27. doi:10.1016/j. sajce.2021.11.001 Prasanthi, M. R., Jayasravanthi, M., and Nadh, R. V. (2016). Kinetic, thermodynamic and equilibrium studies on removal of hexavalent chromium from aqueous solutions using agro-waste biomaterials, casuarina equisetifolia L. and sorghum bicolor. Korean J. Chem. Eng. 33, 2374–2383. doi:10.1007/s11814-016-0078-6 Rahman, A., Yoshida, K., Islam, M. M., and Kobayashi, G. (2023). Investigation of efficient adsorption of toxic heavy metals (chromium, lead, cadmium) from aquatic environment using orange peel cellulose as adsorbent. Sustainability 15 (5), 4470. doi:10.3390/su15054470 Saad, H., El-Dien, F. a. N., El-Gamel, N. E. A., and Abo Dena, A. S. (2022). Azofunctionalized superparamagnetic Fe3O4 nanoparticles: an efficient adsorbent for the removal of bromocresol green from contaminated water. RSC Adv. 12 (39), 25487–25499. doi:10.1039/D2RA03476J Safari, E., Rahemi, N., Kahforoushan, D., and Allahyari, S. (2019). Copper adsorptive removal from aqueous solution by orange peel residue carbon nanoparticles synthesized Frontiers in Environmental Chemistry 22 frontiersin.org Onyango et al. 10.3389/fenvc.2025.1568695by combustion method using response surface methodology. J. Environ. Chem. Eng. 7 (1), 102847. doi:10.1016/j.jece.2018.102847 Sankaran, R., Show, P. L., Ooi, C.-W., Ling, T. C., Shu-Jen, C., Chen, S.-Y., et al. (2020). Feasibility assessment of removal of heavy metals and soluble microbial products from aqueous solutions using eggshell wastes. Clean Technol. Environ. Policy 22 (4), 773–786. doi:10.1007/s10098-019-01792-z Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D., and Prasetyoko, D. (2020). Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Mater. Today Chem. 16, 100233. doi:10.1016/j.mtchem.2019. 100233 Sartape, A. S., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A., and Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian J. Chem. 10, S3229–S3238. doi:10.1016/j.arabjc.2013.12.019 Sawant, P., and Dhabe, A. S. (2022). FT-IR analysis of In-vivo and In-vitro stem, leaf and callus of Ceropegia bulbosa roxb. var. bulbosa. BIOINFOLET-A Q. J. Life Sci. 19 (1), 46–50. Shakor, Z. M., Mahdi, H. H., Al-Sheikh, F., Alwan, G. M., and Al-Jadir, T. (2021). Ni, Cu, and Zn metal ions removal from synthetic wastewater using a watermelon rind (Catullus landaus). Mater. Today Proc. 42, 2502–2509. doi:10.1016/j.matpr.2020.12.570 Shakya, A., and Agarwal, T. (2019). Removal of Cr(VI) from water using pineapple peel derived biochars: adsorption potential and re-usability assessment. J. Mol. Liq. 293, 111497. doi:10.1016/j.molliq.2019.111497 Shee, A., Onyari, J. M., Wabomba, J. N., and Munga, D. (2014). Methylene blue adsorption onto coconut husks/polylactide blended films: equilibrium and kinetic studies. Chem. Material Res. 6, 28–38. Shikuku, V. O., and Jemutai-Kimosop, S. (2020). Efficient removal of sulfamethoxazole onto sugarcane bagasse-derived biochar: two and three-parameter isotherms, kinetics and thermodynamics. South Afr. J. Chem. 73 (1), 111–119. Shimizu, F. L., De Azevedo, G. O., Coelho, L. F., Pagnocca, F. C., and Brienzo, M. (2020). Minimum lignin and xylan removal to improve cellulose accessibility. BioEnergy Res. 13, 775–785. doi:10.1007/s12155-020-10120-z Shukla, S., Khan, R., Srivastava, M. M., and Zahmatkesh, S. (2024). Valorization of waste watermelon rinds as a bio-adsorbent for efficient removal of methylene blue dye from aqueous solutions. Appl. Biochem. Biotechnol. 196 (5), 2534–2548. doi:10.1007/ s12010-023-04448-3 Singh, T., and Singhal, R. (2015). Methyl Orange adsorption by reuse of a waste adsorbent poly (AAc/AM/SH)-MB superabsorbent hydrogel: matrix effects, adsorption thermodynamic and kinetics studies. Desalination Water Treat. 53 (7), 1942–1956. doi:10.1080/19443994.2013.859098 Sips, R. (1948). On the structure of a catalyst surface. J. Chem. Phys. 16 (5), 490–495. doi:10.1063/1.1746922 Song, C., Wu, S., Cheng, M., Tao, P., Shao, M., and Gao, G. (2013). Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead (II) from aqueous solutions. Sustainability 6 (1), 86–98. doi:10.3390/su6010086 Supanchaiyamat, N., Jetsrisuparb, K., Knijnenburg, J. T., Tsang, D. C., and Hunt, A. (2019). Lignin materials for adsorption: current trend, perspectives and opportunities. Bioresour. Technol. 272, 570–581. doi:10.1016/j.biortech.2018.09.139 Taib, N. I., Rosli, N. A., Rejab, M. M., Rosdi, N. a. F. M., Aziz, N. a. A., and Halim, S. N. A. (2023). Kinetic and equilibrium modeling of low-cost adsorbent of untreated watermelon peel for adsorption of zinc(II). Desalination Water Treat. 306, 122–130. doi:10.5004/dwt.2023.29831 Taib, N. I., Rosli, N. A., Saharrudin, N. I., Rozi, N. M., Kasdiehram, N. a. A., and Nazri, N. N. T. A. (2021). Kinetic, equilibrium, and thermodynamic studies of untreated watermelon peels for removal of copper (II) from aqueous solution. Desalination Water Treat. 227, 289–299. doi:10.5004/dwt.2021.27299 Temkin, M. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta physiochim. URSS 12, 327–356. Tome, S., Shikuku, V., Tamaguelon, H. D., Akiri, S., Etoh, M. A., Rüscher, C., et al. (2023). Efficient sequestration of malachite green in aqueous solution by laterite-rice husk ash-based alkali-activated materials: parameters and mechanism. Environ. Sci. Pollut. Res. 30, 67263–67277. doi:10.1007/s11356-023-27138-3 Tran, H. N., You, S.-J., Nguyen, T. V., and Chao, H.-P. (2017). Insight into the adsorption mechanism of cationic dye onto biosorbents derived from agricultural wastes. Chem. Eng. Commun. 204 (9), 1020–1036. doi:10.1080/00986445.2017. 1336090 Unesco (2024). Editor Connor, R. Available online at: https://coilink.org/20.500. 12592/3j9kkc5. Villabona-Ortíz, A., Tejada-Tovar, C., and González-Delgado, Á. D. (2022). Elimination of chromium (VI) and nickel (II) ions in a packed column using oil palm bagasse and yam peels. Water 14 (8), 1240. doi:10.3390/w14081240 Wang, J., and Guo, X. (2020). Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258, 127279. doi:10.1016/j. chemosphere.2020.127279 Wang, Q., Wang, Y., Tang, J., Yang, Z., Zhang, L., and Huang, X. (2022). New insights into the interactions between Pb(II) and fruit waste biosorbent. Chemosphere 303 (Pt 1), 135048. doi:10.1016/j.chemosphere.2022.135048 Wanja, N. E., Murungi, J., Ali, A. H., and Wanjau, R. (2016). Efficacy of adsorption of Cu (II), Pb (II) and Cd (II) Ions onto acid activated watermelon peels biomass from water. Int. J. Sci. Res. 5 (8), 671–679. doi:10.21275/ART2016929 Weber, W. J., and Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89 (2), 31–59. doi:10.1061/JSEDAI.0000430 Wei, Y., Li, P., Yang, C., Li, X., Yi, D., and Wu, W. (2023). Preparation of porous carbon materials as adsorbent materials from phosphorus-doped watermelon rind. Water 15 (13), 2433. doi:10.3390/w15132433 Wu, W., Yang, M., Feng, Q., Mcgrouther, K., Wang, H., Lu, H., et al. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass bioenergy Res. 47, 268–276. doi:10.1016/j.biombioe.2012.09.034 Xiong, W., Tong, J., Yang, Z., Zeng, G., Zhou, Y., Wang, D., et al. (2017). Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: performance and mechanism. J. Colloid Interface Sci. 493, 17–23. doi:10. 1016/j.jcis.2017.01.024 Yahya, M. A., Al-Qodah, Z., and Ngah, C. W. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew. Sustain. Energy Rev. 46, 218–235. doi:10.1016/j.rser.2015.02.051 Yang, T., and Lua, A. C. (2006). Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells. Mater. Chem. Phys. 100 (2), 438–444. doi:10.1016/j.matchemphys.2006.01.039 Yilmaz, O., and Tugrul, N. (2021). Zinc adsorption from aqueous solution using lemon, orange, watermelon, melon, pineapple, and banana rinds. Water Pract. Technol. 17 (1), 318–328. doi:10.2166/wpt.2021.102 Yuliusman, A. M. P., Hanafi, A., and Nafisah, A. R. (2020). Activated carbon preparation from durian peel wastes using chemical and physical activation. AIP Conf. Proc. 2230 (1). doi:10.1063/5.0002348 Yunusa, U., Usman, B., and Ibrahim, M. B. (2021). Cationic dyes removal from wastewater by adsorptive method: a systematic in-depth review. Algerian J. Chem. Eng. AJCE 1 (2), 6–40. Yusuf, I., Flagiello, F., Ward, N. I., Arellano-García, H., Avignone-Rossa, C., and Felipe-Sotelo, M. (2020). Valorisation of banana peels by hydrothermal carbonisation: potential use of the hydrochar and liquid by-product for water purification and energy conversion. Bioresour. Technol. Rep. 12, 100582. doi:10. 1016/j.biteb.2020.100582 Zhao, Y., Xing, C., Shao, C., Chen, G., Sun, S., Chen, G., et al. (2020). Impacts of intrinsic alkali and alkaline earth metals on chemical structure of low-rank coal char: semi-quantitative results based on FT-IR structure parameters. Fuel 278, 118229. doi:10. 1016/j.fuel.2020.118229 en_US
dc.identifier.uri http://erepository.kafuco.ac.ke/123456789/270
dc.description.abstract The potent of watermelon based adsorbent for the elimination of various pollutants from water was reviewed. This study shows that watermelon-based adsorbents offer a cost effective and environmentally friendly adsorbent for the removal of many pollutants including dyes, heavy metals and nutrients. The main functional groups responsible for the binding properties of raw watermelon rind are the hydroxyl (–OH), carboxyl (–COOH), carbonyl (-C=O-) and amines (-NH2). Equilibrium adsorption data largely followed the Langmuir isotherm, whereas the kinetic data for both dyes and heavy metals mostly fitted to the pseudo-second order kinetic model. This notwithstanding, very few studies reported the use of natural wastewaters to gain insight into the potential for real world application. Again, the review noted an overreliance on the isotherms, kinetic and thermodynamic data in predicting the mechanism of adsorption. Nonetheless, watermelon rind based adsorbents offer an effective removal means for many pollutants, calling for further exploration, with future research likely to focus on overcoming the aforementioned limitations en_US
dc.language.iso en en_US
dc.publisher Frontiers in Environmental Chemistry en_US
dc.subject watermelon waste, adsorption, synthesis, performance, mechanisms en_US
dc.title Watermelon rind based adsorbents for the removal of water pollutants: a critical review en_US
dc.type Other en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Erepository


Browse

My Account